![]() |
Fuel plumbing for an FE
Hey Gang,
I am the proud owner of csx4788 which will hopefully be finished soon. I am having some problems with the fuel system and got into a discussion with my race car mentor. I am currently running the two -6 hoses from the two fuel pumps into a fuel block into the 3/8 " pipe connector to a holley fuel pressure regulator to a larhe summit racing fuel filter out a -8 aeroquip line to a -8 aeroquip fuel log to a holley 4150 750 cfm double pumper and measuring fuel pressure off the other end of the fuel log. The motor is a 1965 HM 427 (~10:1) side oiler with edlebrock heads (modified for a 2.19" intake) that should be putting out ~ 525 hp at the fly wheel. My mentor is telling me that I will not have enough fuel flow to the carb and that it would be better to move the regulator to the carb, run -8 line from the fuel block to the filter and -8 line from the filter to the 3/8 connector on the regulator and then (2) -6 lines from the regulator to the carb. Will I really get that much more flow by replumbing it as suggested? Is my flow truly going to be inadequate as it is plumbed right now? Thanks. John(;-) |
I go by the rule of thumb that a 3/8" line is good for 400 hp. Therefore, individual 3/8" (-6) line from the tank to each pump, the same to where they meet, and 1/2" (-10) to the regulator, and you can go -6 to each carb if you're running two, or best to stick with -10 if you're only runing one carb.
In other words, yeah, like he said. :) JHMO, Dan |
My understanding is that it's all about where the constraint is in the system so you want the smallest diameter line at the carb, with everything in "front" of that going up one size at each major connection back toward the tank. Seems having any -6 lines in the flow before the -10 is going to limit you to the -6 flow rate. But with 2 -6 lines feeding one -10 line, then it's hard to say - would that be the equivalent of a -12 feeding a -10 and then into a -6? Also, putting the regulator near the carb makes sense as that's where you need the pressure to be regulated - going into the float bowls. And won't do you any good for the lines to the carb to be any bigger than the inlets. As for how much difference in flow, there's too much science in that answer for me :-)
|
Quote:
My guess is that since cross sectional area is a function of radius (diameter) squared, you square the number to get the relative cross sectional area, so a 6-AN line would have a relative area of 36, 8-AN would have 64, 10-AN would be 100, and a 12-AN would be 144. |
I knew someone would bail me out on that - thanks Anthony!
|
oooooooops
|
Quote:
My regulator is beside the two carbs, with a 3/8" (-6) line going to each carb. Dan |
OK, but to Anthony's point, is the flow from the combination of the two -6 lines greater than, or less than the flow potential of the single -10 line. If it's less, then you may want to change those -6 lines to something larger to remove the "constraint" and maximize flow up to the carb. So, answer may be: change the -6 lines to something bigger and move the regulator up to the carb end of the -10 line.
Of course the simpler answer is to actually figure out the flow rate you're getting and determine if that is indeed sufficient before making any changes. Could spend a lot of time and money based on theory when in fact there isn't an issue - which I always find myself doing despite this advice :o I think I have some weird need to have more projects to do on the car vs just going and driving it ;) |
Quote:
Quote:
|
Quote:
|
Quote:
|
Quote:
Your input is appreciated, Anthony. You've got a lot of knowledge stored in that cranium of yours. :) Dan |
Compared to 1 -12 line, 2 -06 lines are roughly half.
2 -06 lines are roughly 74% of 1 -10 line and roughly 23% more than 1 -08 line. -06 = .344 dia -08 = .438 -10 = .562 -12 = .688 |
Quote:
|
Dan,
as cross sectional area determines max flow capabilities, the cross sectional area of a circle is pie*r*r, or pie*d*d/4. So, if I have a 2" ID pipe, the cross sectional area would be 3.141 sq inches. If I have a pipe twice in diameter, 4 inches, then the cross sectional area is 12.564 sq inches, 4 X as much. Therefore a 6AN hose has a 3/8" ID, and a 12AN hose, twice the diameter, has a 3/4" ID, the 12AN hose has 4X the cross sectional area, more area for fluid to flow, and should flow about 4X as much as a single 6AN. So, it would take 4 6AN lines to flow about as much as a single 12AN line. However, what you said before is correct as well, in that wall resistance does come into play, and if the cross sectional areas of 4 6AN lines and a single 12AN line are exactly the same, the 12 AN line would flow a little more than the 4 6AN lines due to wall resistance, and would be variable from 1% to 10, 20, 30% dependent upon on the flow rate and viscosity of the fluid, with higher flow rates and higher viscosity fluids having a greater loss to resistance in the 4 6AN lines, and a greater diofference comparing it to the single 12AN line. Not to open another can of worms, but this also has ramifications in cylinder port design, not that I'm any expert on the subject, but I do like the theory. With an exhaust port, which is purely hot gas, I would think you would want round exhaust ports as an optimal design, with less wall-gas injterface not only for flow resistance , but also less heat transfer. However, you also don;t want a sharp bend in the short side radius, so you may want to raise the floor alittle, blunting the bottom of the circle, to enhance flow in the bottom of the port. With the intake port, it is more complex, as you have a mixture of air and liquid/vapor fuel. You may want more of a square port than a round port, utilizing a flat bottom, for more wall space for fuel to be vaporized, so a round port on the intake side may not be optimal even though a round port is optimal for flow alone, with again taking in consifderation of the short side radius of the port. As I have found out many times, things are usually alot more complicated than what they appear to be in the first place. |
Uhhhh - wow!
Thanks for all the input. Maybe I can make this question a little easier. My csx4750 series came plumbed from the factory with two fuel pumps in the trunk running (2) -6 lines into the engine compartment. I planned on running them into a junction block, into a Holley fuel pressure regulator, into a large summit fuel filter into -8 aeroquip line to a single Holley 4150hp 750cfm double pumper with an aeroquip -8 fuel log and measuring fuel pressure off the other end (after it feeds the carb) on a 1965 427 (30 over) side oiler with edlebrock aluminum heads (Intake = 2.19, exhaust=2.09) rated at ~525 gross / crankshaft hp. Does anyone have actual experience with a similar set up and will it be adequate for a spiritedly driven street car (I already have enough racing mustangs for the track). The car is already plumbed this way, but I am still struggling with getting it finished and running, so I can still change it if I have to, but I don't want to have to replumb it. Thanks again.
John(;-) |
Quote:
|
Quote:
By the way, the car still runs great...going back to my original rule of thumb of one 3/8" fuel line will support 400 hp, my two 3/8" lines are still good for 800 hp, although, thanks to you, I'm beginning to have doubts about that too... :) Dan |
Quote:
There's a 90 elbow inside the remote oil filter mount itself, the center outflow, although I took it apart, and tried to chamfer the corner, trying to make it into two 45 degree bends, but if I remember correctly, I think it was already like two 45 degree bends instead of a single 90. With 90 elbows, I had thought about putting a little epoxy in the long radius, corner, of a 90 elbow fitting, again to try to make it into two 45 bends instead of a single 90 to try and smooth out the flow. I actually think I did this in the 90 elbow outflow from the mechanical fuel pump, but I can't remember for sure, as I'd have to take the fitting off to reinspect it. I know I didn't do it on the oil return elbow to the engine block. It would really have to tested to see if it really makes any difference, but again, I do think I put some epoxy inside the elbow fitting on my fuel system, like this. http://www.clubcobra.com/photopost/data/500/elbow-3.png |
Fuel pump and fuel line minimum requirements are based on HP.
The basic rule of thumb is: up to 375 HP requires a minimum of a -06 line. 376 - 550 HP requires a -08 line 551 - 800 HP requires a -10 line For a deadhead system the formula for determining the minimum fuel pump GPH rating is: HP x .23 = GPH example: 525 x .23 = 120.8 GPH For a return system the formula is: HP x .17 = GPH example: 525 x .17 = 89.2 GPH The next component after the regulator should be the carburator. |
| All times are GMT -7. The time now is 11:51 PM. |
Powered by vBulletin® Version 3.8.0
Copyright ©2000 - 2026, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
The representations expressed are the representations and opinions of the clubcobra.com forum members and do not necessarily reflect the opinions and viewpoints of the site owners, moderators, Shelby American, any other replica manufacturer, Ford Motor Company. This website has been planned and developed by clubcobra.com and its forum members and should not be construed as being endorsed by Ford Motor Company, or Shelby American or any other manufacturer unless expressly noted by that entity. "Cobra" and the Cobra logo are registered trademarks for Ford Motor Co., Inc. clubcobra.com forum members agree not to post any copyrighted material unless the copyrighted material is owned by you. Although we do not and cannot review the messages posted and are not responsible for the content of any of these messages, we reserve the right to delete any message for any reason whatsoever. You remain solely responsible for the content of your messages, and you agree to indemnify and hold us harmless with respect to any claim based upon transmission of your message(s). Thank you for visiting clubcobra.com. For full policy documentation refer to the following link: