 
Main Menu
|
Nevada Classics
|
Advertise at CC
|
| S |
M |
T |
W |
T |
F |
S |
| |
|
|
|
|
|
1 |
| 2 |
3 |
4 |
5 |
6 |
7 |
8 |
| 9 |
10 |
11 |
12 |
13 |
14 |
15 |
| 16 |
17 |
18 |
19 |
20 |
21 |
22 |
| 23 |
24 |
25 |
26 |
27 |
28 |
29 |
| 30 |
|
|
|
|
|
|
|
CC Advertisers
|
|
21Likes

11-16-2021, 06:13 AM
|
 |
CC Member
|
|
|
Join Date: Feb 2002
Location: Dadeville,
AL
Cobra Make, Engine: Sold my EM.
Posts: 2,459
|
|
Not Ranked
I agree with Gary. I think it is more likely the unbalanced tire(s) at the front is out of sync with your front suspension components at some speeds and the shake comes and goes as those two resonant frequency patterns come and go into phase with each other.
__________________
Tommy
Cheetah tribute completed 2021 (TommysCars.Weebly.com)
Previously owned EM Cobra
"Never attribute to malice that which is adequately explained by stupidity." - Hanlon's Razor
|

11-16-2021, 06:34 AM
|
|
CC Member
|
|
|
Join Date: Dec 2015
Posts: 1,442
|
|
Not Ranked
Sean,
From your earlier posts (when you had 17" wheels) you've had this issue it appears back to 2017.
That said this thread may be of help if it's your pin drive hubs causing the issue.
BDR vibration issue finally fixed
|

11-16-2021, 08:57 AM
|
 |
CC Member
|
|
|
Join Date: Jun 2020
Location: SoCal,
CA
Cobra Make, Engine: BDR build #983, FRM 392
Posts: 380
|
|
Not Ranked
Quote:
Originally Posted by Tommy
I agree with Gary. I think it is more likely the unbalanced tire(s) at the front is out of sync with your front suspension components at some speeds and the shake comes and goes as those two resonant frequency patterns come and go into phase with each other.
|
How would the front wheel go in and out of phase? If traveling in a straight line and with the same tire size and identical pressures in the front tires, wouldn't the front wheels (in theory) be rotating at the same speeds and as such, always be 'in synch' with each other? And, if the road surface is ideal with no bumps, ripples or undulations, then how do the suspension components go in and out of phase with the rotating wheels?
Last edited by SBSerpent; 11-16-2021 at 06:01 PM..
|

11-17-2021, 02:18 PM
|
 |
CC Member
|
|
|
Join Date: Feb 2006
Location: Gilroy,
CA
Cobra Make, Engine: SPF 2291, Whipple Blown & Injected 4V ModMotor
Posts: 2,741
|
|
Not Ranked
Quote:
Originally Posted by SBSerpent
How would the front wheel go in and out of phase? If traveling in a straight line and with the same tire size and identical pressures in the front tires, wouldn't the front wheels (in theory) be rotating at the same speeds and as such, always be 'in synch' with each other? And, if the road surface is ideal with no bumps, ripples or undulations, then how do the suspension components go in and out of phase with the rotating wheels?
|
The first time you turn a corner the inner wheel rotates slower than the outer wheel. This is why rear tires squeal when you use a locked rear axle on the street.
Ed
__________________
Help them do what they would have done if they had known what they could do.
Last edited by eschaider; 11-17-2021 at 02:24 PM..
Reason: Spelling & Grammar
|

11-17-2021, 02:54 PM
|
 |
CC Member
|
|
|
Join Date: Feb 2002
Location: Dadeville,
AL
Cobra Make, Engine: Sold my EM.
Posts: 2,459
|
|
Not Ranked
Quote:
Originally Posted by SBSerpent
How would the front wheel go in and out of phase? If traveling in a straight line and with the same tire size and identical pressures in the front tires, wouldn't the front wheels (in theory) be rotating at the same speeds and as such, always be 'in synch' with each other? And, if the road surface is ideal with no bumps, ripples or undulations, then how do the suspension components go in and out of phase with the rotating wheels?
|
I couldn't find a good picture to illustrate this concept so I'll try with words alone. All systems have a natural resonant vibration frequency. For a front suspension, that means that when the spring is compressed as it passes over a bump (or reacts to the up force from an out-of-balance tire), it will compress and then extended in predictable cycles until the damper (shock absorber) stops it. If you have an out-of-balance tire attached to that suspension, it too has a natural up and down motion (vibration) determined largely by the speed and diameter of the tire. Most of the time those two vibrations will not be in sync and tend to cancel each other out to a degree. But over time, the up motion of the tire will coincide with the rebound up motion of the suspension to produce a larger deflection of the suspension. The same occurs in the down direction. Such a phenomenon might account for your shake coming and going.
__________________
Tommy
Cheetah tribute completed 2021 (TommysCars.Weebly.com)
Previously owned EM Cobra
"Never attribute to malice that which is adequately explained by stupidity." - Hanlon's Razor
|

11-17-2021, 07:08 PM
|
 |
CC Member
|
|
|
Join Date: Jun 2020
Location: SoCal,
CA
Cobra Make, Engine: BDR build #983, FRM 392
Posts: 380
|
|
Not Ranked
Quote:
Originally Posted by Tommy
I couldn't find a good picture to illustrate this concept so I'll try with words alone. All systems have a natural resonant vibration frequency. For a front suspension, that means that when the spring is compressed as it passes over a bump (or reacts to the up force from an out-of-balance tire), it will compress and then extended in predictable cycles until the damper (shock absorber) stops it. If you have an out-of-balance tire attached to that suspension, it too has a natural up and down motion (vibration) determined largely by the speed and diameter of the tire. Most of the time those two vibrations will not be in sync and tend to cancel each other out to a degree. But over time, the up motion of the tire will coincide with the rebound up motion of the suspension to produce a larger deflection of the suspension. The same occurs in the down direction. Such a phenomenon might account for your shake coming and going.
|
Shocks are the original Gabriels that came with the car (2011 build). Wonder if swapping out the shocks to the KYBs will help matters.
|
Posting Rules
|
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts
HTML code is Off
|
|
|
All times are GMT -7. The time now is 04:53 AM.
Links monetized by VigLink
|