SUPPORT OUR SPONSOR

Go Back   Club Cobra > Club Cobra Tech Areas > Shop Talk

Welcome to Club Cobra!  The World's largest non biased Shelby Cobra related site!

  •  » Representation from nearly all Cobra/Daytona/GT40 manufacturers
  •  » Help from all over the world for your questions
  •  » Build logs for you and all members
  •  » Blogs
  •  » Image Gallery
  •  » Many thousands of members and nearly 1 million posts! 

YES! I want to register an account for free right now!  p.s.: For registered members this ad will NOT show

MMG Superformance
Nevada Classics
MMG Superformance
Main Menu
Nevada Classics
Nevada Classics
MMG Superformance
Advertise at CC
Banner Ad Rates
Keith Craft Racing
Keith Craft Racing
Keith Craft Racing
December 2025
S M T W T F S
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

Kirkham Motorsports

 
 
LinkBack Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #9 (permalink)  
Old 01-16-2004, 09:15 AM
CC Member
Visit my Photo Gallery

 
Join Date: Dec 2001
Location: Louisville, KY
Cobra Make, Engine: I'm Cobra-less!
Posts: 9,417
Send a message via AIM to blykins
Not Ranked     
Default

Well, I can give you formulas for deriving pad temperature based on heat transfers in both accounts like I described earlier.

q'' = convective heat flux
h = heat transfer coefficient (you will need these for the various materials you're anticipating using....i.e. material for rotors, and the material for the pads.
t=thickness of pad
k = thermal conductivity ( you will need to find this also for the various materials)
Tp = Temp of pad
Tinf = Temperature infinity....i.e. temp of ambient air
A = area of pad. This will be a doozy to find out....each pad will be different...you might just wanna use a general catch-all number for all pads...maybe a general area for single piston calipers, one for dual piston, one for quad piston...etc....


Now with that being said, total heat flux will be the sum of the conduction between the metals, and the convection between the metals and the ambient air.

So if you focus on the pad, you can generalize that on one side of the pad during braking contact, you will have conduction heat transfer from the pad to the rotor....and there will also be air flowing around the caliper and part of the pad itself.

qtotal = (k(Tp-Tinf))/t) + hA(Tp-Tinf)

That's gonna be as close as I can get ya without some deeper analysis of piston diameters, air flow, etc....

q should come out in W....

What I haven't stated from the beginning is that you're gonna need some sample temperatures to get you started....because you have basically two unknowns.....the heat flux (q) and the pad temperatures. You can probably get some sample values of each and interpolate.

I know this is as clear as mud...I'm doing the best I can...it's been like almost 3 years since I've had this course...and like almost everything else, you don't use it after you take it in class.

I'll try to help you as much as I can...let me know if you have any questions...I'll try to explain what I did....
__________________
Lykins Motorsports, LLC
Custom SBF/Cleveland/FE/385 Series Engines
Street, Road Race, Drag Race, Pulling Truck
www.lykinsmotorsports.com
www.customfordcams.com
brent@lykinsmotorsports.com
Reply With Quote
 



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT -7. The time now is 02:36 AM.


Powered by vBulletin® Version 3.8.0
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
The representations expressed are the representations and opinions of the clubcobra.com forum members and do not necessarily reflect the opinions and viewpoints of the site owners, moderators, Shelby American, any other replica manufacturer, Ford Motor Company. This website has been planned and developed by clubcobra.com and its forum members and should not be construed as being endorsed by Ford Motor Company, or Shelby American or any other manufacturer unless expressly noted by that entity. "Cobra" and the Cobra logo are registered trademarks for Ford Motor Co., Inc. clubcobra.com forum members agree not to post any copyrighted material unless the copyrighted material is owned by you. Although we do not and cannot review the messages posted and are not responsible for the content of any of these messages, we reserve the right to delete any message for any reason whatsoever. You remain solely responsible for the content of your messages, and you agree to indemnify and hold us harmless with respect to any claim based upon transmission of your message(s). Thank you for visiting clubcobra.com. For full policy documentation refer to the following link: CC Policy